Sb Surface Modification of Pd by Mimetic Underpotential Deposition for Formic Acid Oxidation

نویسندگان

  • Long-Long Wang
  • Xiao-Lu Cao
  • Ya-Jun Wang
  • Minhua Shao
چکیده

The newly proposed mimetic underpotential deposition (MUPD) technique was extended to modify Pd surfaces with Sb through immersing a Pd film electrode or dispersing Pd/C powder in a Sb(III)-containing solution blended with ascorbic acid (AA). The introduction of AA shifts down the open circuit potential of Pd substrate available to achieve suitable Sb modification. The electrocatalytic activity and long-term stability towards HCOOH electrooxidation of the Sb modified Pd surfaces (film electrode or powder catalyst) by MUPD is superior than that of unmodified Pd and Sb modified Pd surfaces by conventional UPD method. The enhancement of electrocatalytic performance is due to the third body effect and electronic effect, as well as bi-functional mechanism induced by Sb modification which result in increased resistance against CO poisoning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical properties of mixed WC and Pt-black powders

The electrochemical characteristics of a mixture of Pt-black and WC powders and its catalytic activity for methanol and formic acid oxidation were investigated in acid solution. XRD and AFM measurements revealed that the WC powder employed for the investigation was a single-phase material consisting of crystallites/spherical particles of average size of about 50 nm, which were agglomerated into...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation.

The hollow palladium nanospheres with the porous shell comprised of uniform 5 nm Pd nanoparticles (Pd NS-HP) have been synthesized successfully by employing a simple replacement process between PdCl4(2-) ions and Co with the assistance of a structure-directing agent, polyvinyl pyrrolidone (PVP). Then, the obtained Pd NS-HP is supported on graphene nanosheets (GN) to prepare Pd NS-HP/GN composit...

متن کامل

A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.

The objective of the research described in this Account is the development of high-throughput computational-based screening methods for discovery of catalyst candidates and subsequent experimental validation using appropriate catalytic nanoparticles. Dendrimer-encapsulated nanoparticles (DENs), which are well-defined 1-2 nm diameter metal nanoparticles, fulfill the role of model electrocatalyst...

متن کامل

Size-controlled synthesis of mesoporous palladium nanoparticles as highly active and stable electrocatalysts.

We report a solution phase synthesis of monodispersed mesoporous Pd nanoparticles (MPNs) with narrow particle size distributions. The average particle sizes can be controlled to a range of 25 nm to 42 nm, by utilizing cationic surfactants (as structure-directing agents) and triblock copolymers (as protective agents for controlled Pd deposition). The obtained MPNs exhibit very high electrocataly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015